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Abstract. We describe a novel algorithm for texture discrimination which we
tested on a robot using an artificial whisker system. Experiments on both fixed
head and mobile platform have shown that this system is efficient and robust, with
greater behavioral capacities than previous similar approaches, thus, demonstrat-
ing capabilities to complement or supply vision. Moreover, results tends to show
that the length and number of whiskers may be an important parameter for texture
discrimination. From a more fundamental point of view these results suggest that
two currently opposing hypotheses to explain texture recognition in rats, namely
the “kinetic signature hypothesis” and the “resonance hypothesis”, may be, in
fact, complementary.

1 INTRODUCTION

Touch is a very important sensory modality for many species of insects and mammals.
For example, the whiskers of a rat are often compared to human fingertips in terms of
their tactile - or haptic - ability. In particular, they make it possible to finely discriminate
textures [1, 2] or objects [3] and even to precisely determine an aperture width [4]. Biol-
ogists have studied rat whiskers for decades and know quite precisely the pathway from
an individual vibrissa to the somatosensory cortex. One remarkable property of this
haptic system is that whiskers project somatotopically to this part of the cortex, into a
structure named “barrel cortex”. A “barrel” is a discrete neural structure that receives an
input principally from a given whisker, with little influence from neighboring whiskers
[5]. This relatively simple system, as compared to vision for example, facilitates the
study of the neural coding scheme, as well as its use for perception and higher-level
cognition.

Being simple, efficient and robust, whiskers should become popular in robotics [6]
although few robots have been equipped with such devices in the past. The correspond-
ing implementations were calling on various sensors ranging from the simplest binary
switch to a very accurate bi-dimensional torque sensor. Brooks (1989), for example,
used a simple sensor made of a metal shaft fixed on a push button, providing a very
robust security sensor for a walking robot. Another implementation called upon probe
whiskers made of a stem glued to a potentiometer with return springs and was used to



evaluate the contour of an object [8]. Even wind sensitive sensors have been designed
[9] allowing a robot to navigate through a labyrinth. Basically, this sensor was made of
small springs surrounded by electric contacts and was able to detect the direction of the
wind.

Recently, several artificial whisker systems have been used in robotics to discrim-
inate textures. Whisker hairs of real rats, glued to capacitive sensors (electret micro-
phone), served [10, 11] to produce very precise haptic sensors, with an uni-dimensional
measurement of dynamic signals. Using an active whisker array of such sensors mounted
on a mobile robot, Fend et al. (2003) successfully discriminated a set of 11 textures. Kim
and Moller (2004) tried both piezo and hall-effect sensors which, mounted in orthog-
onal pairs, provided a bi-dimensional measure of vibrissa deflection. Like capacitive
sensors, piezo sensors cannot deliver static signals, but this can be achieved using an
extra integrator circuit. With a data processing based on spectrum density, these authors
were able to discriminate a set of 7 sandpapers. Likewise, Seth et al. (2004) performed
texture discrimination using arrays of Flex sensors, which provided an unidimensional
measure of curvature. Here, temporal differences between pairs of vibrisse were fed
into a barreloid system with spiking neurons. Finally, Fox et al. (2009) used two active
whiskers with strain gage-based sensors mounted on a mobile robot. They explored dif-
ferent bioinspired methods of feature extraction and the implication of unconstrained
whisker-texture contact on classification performance.

The work described herein contributes to the Psikharpax project [15] which aims at
designing a biomimetic artificial rat. Besides visual, auditory and vestibular sensors, the
corresponding robotic platform is equipped with an original whisker system described
elsewhere [16]. This system is intended to be used for texture discrimination and object
recognition and, more generally, as an auxiliary or a substitute to vision. Its performance
in texture discrimination is the subject of the present article.

2 SYSTEM DESCRIPTION

Insofar as the impact of the specific implementation of a rat’s whisker system on its
functionalities is currently unknown, we tried to design an artificial whisker system
mimicking as much as possible the natural organization. Accordingly, our system [16]
is based on a simple, elastomer-based, artificial skin with two arrays of 33 vibriss& and
an arc/row organization (cf. Fig 1) and a whisker-length gradient (cf. Table 1) quite
similar to those encountered in the rat.

The deflection of each vibrissa is sampled in both its anteroposterior and dorsoven-
tral axes, providing two 8-bit measurements at 1157Hz. However, orientation infor-
mation being not necessary for texture discrimination, the two measures are normed

(V/x2+4y2).



Fig. 1: Comparison of whisker pads in a real rat and in our robot.

3 TEXTURE DISCRIMINATION

3.1 Feature Extraction

Neither the details of how a rat’s brain actually encodes texture features, nor the exact
nature of these features, are yet known. Arabzadeh et al. (2004) experienced different
feature codings on both artificial and natural (in vivo) whiskers. Starting from the prin-
ciple that a pure sinusoidal signal can be fully described by its amplitude A and its
frequency f, they stimulated a rat’s whiskers with various signals varying in amplitude
and frequency. Then, recording the induced neural activity in the barrel cortex, they
deduced that the neural activity most probably encodes a quantity homogeneous to the
product Af. The generalized expression of this quantity to any natural signal is known
as the “equivalent noise level (ENL)” (for more details see: [18]), which is usually used
to measure sound power. This quantity can also be related to the more common “spec-
tral centroid” [14].

To compute the latter, instead of using a Fast Fourier Transform algorithm - of which
no natural equivalent is known - we simply called upon a time domain “on-the-fly” es-
timate of the quantity X®. The corresponding algorithm (cf. Fig 2) can be compared to



Table 1: Vibrissa arcs, with mean measured lengths in mm (in one adult rattus norvegicus speci-
men). Compared to those of a real rat, the robot’s whiskers are approximately 6 times longer.

Arc vibrisse rat [robot
1 o, B,v,8,E1 41.8| 250
2 |Al,B1, Cl1, D1, E2|37.2| 200
3 |A2, B2, C2,D2, E3|27.6| 150
4 |A3, B3, C3,D3,E4[20.6| 120
5 |A4, B4, C4, D4, E5(12.6| 100
6 C5, D5, E6 8.33| 90
7 C6, D6, E7 70
8 D7,E8 55

those used in auditory feature extraction, like ZCPA that is used for speech recognition
[19-21]. It provides a quantity homogeneous to the ENL which we call the “Instanta-
neous Mean Power” or IMP feature.
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Fig. 2: Feature extraction algorithm. “Peaks” are detected through the monitoring of the signal’s
derivative and frequencies are estimated through the inverses of the time intervals between suc-
cessive peaks. Then, the peak amplitude is multiplied by the peak frequency, averaged within a
time window.

This approach relies on the strong hypothesis that the peaks thus characterized pro-
vide enough information to describe a texture. Such hypothesis is reinforced by the fact
that, when Licklider and Pollack (1948) assessed the effects of various signal distor-
tions in human speech recognition, they found that “infinite clipping” - a treatment that
only kept a signal’s periodicity - did not prevent speech recognition in humans.

Be that as it may, the corresponding algorithm is very simple and computationally
very cheap as it necessitates only one division per peak detection (%) plus
one addition (to compute the peak’s period) at each time step. As for peak detection
proper, it only entails one subtraction (x; —x;_1) and a comparison.

There are however possible limitations to the proposed algorithm. In particular, in-
put data are drastically reduced by this procedure according to which a pure sinus input
of frequency F and a triangle input of fondamental frequency F will lead to the same
feature value although they obviously don’t have the same spectrum. Likewise, turns



out that amplitude modulations cannot be detected by a single vibrissa. Our hypothesis
is that such limitations are alleviated by the fact that the natural filtering of vibrissz,
due to their intrinsic mechanical characteristics, decomposes complex signals along the
pad in a manner similar to how the cochlea decomposes auditory signals.

3.2 Fixed Head Experiment

Experimental Apparatus At first, we tested this haptic system according to a rela-
tively constrained fixed head experiment that consisted in sweeping a whisker pad over
a set of eight sandpapers whose grits varied from P180 to P50 (cf. Fig 3). Sandpa-
per provide a complex random texture appropriate for this task and has been used on
various experiment with real rats. Using this material, we performed qualitative exper-
iments with humans that clearly indicated that the task of discriminating such textures
by tactile contact only is a very difficult one, an observation also made by Hipp and
coll. (2005) .

Fig. 3: The texture set used for discrimination.

A vibrissa pad was fixed on the robot’s head which could move in pan-tilt direc-
tions. The pan axis was at a fixed distance from the texture sample (cf. Fig 4) that was
presented with a small amount of variability in position (~ 41cm) between each trial,
with an appropriate angle to provide contact with a maximum number of whiskers.

For each texture, 400 experiments were made, 300 for learning and 100 for testing.
The raw data (x and y deflections, 8 bits resolution sampled at 1157Hz) were normed
(v/Xx2+y2). For each vibrissa, this measure was fed into the feature extraction algorithm
that output the IMP as one float value. Finally we summed these IMP values for each
vibrissa during the sweep. Having thus obtained an input vector of 33 floats for each
trial, we fed it into a simple multi layer perceptron (MLP) with 33 input neurons, 33
hidden layer neurons and 8 output neurons, to perform supervised learning. We used the
FANN library [24] with the iRPROP training algorithm [25]. The final classification was
done by a winner-take-all (WTA) on the 8 output neurons.
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Fig. 4: Schematic of the experimental protocol. A: start position, B: mid position, C: end position.

Fig. 5: Top view of the experimental protocol.

Results Table 2 gives the confusion matrices obtained on 100 test data. The mean
performance is clearly above 90% (here the chance level is % = 12.5%), which greatly
improves the human aptitude at solving the same task.

Using the data thus acquired, we tested the influence of the number of vibriss@ on
the classification performance. Starting with data obtained with one arc (Arc 1, 5 vib-
riss@ cf. Table 1), then with two arcs (Arc 1 + Arc 2, 10 vibrissa) etc, up to the whole
whisker pad, we assessed at each stage the quality of the discrimination. Results are
summarized on Figure 6. The percentage of successful discriminations is quickly ris-
ing with the number of vibrissae involved and reaches values comprised between 90
and 95% when three or more arcs (15 vibriss®) are concerned. This result confirms
previously obtained ones in [10, 23].

When analyzing the performances obtained with a single arc (cf. Fig 7), one ob-
serves a great variability. Indeed, it seems that each arc separately performs better on
a subset of the textures. For example, arc 2 is very bad at recognizing texture 5, but



Table 2: Confusion matrix obtained for the 8 textures using IMP.
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Fig. 6: Mean performance (% of successful discriminations) obtained with IMP, over the number
of vibriss@ involved.

quite good with texture 6. This suggests that iso-length arcs complement each other and
probably explains the increase in performance with the number of arcs involved.

The relative quality of these results demonstrates that the IMP is a suitable feature
for texture recognition. However, as Fox et al. (2009) pointed out, the kind of fixed head
task used so far is very different from that of a robot moving in an environment, where
the distances and angles with which whiskers touch any texture are constantly varying.
Therefore, to assess the robustness of the IMP, we also performed such a complemen-
tary experiment.

3.3 Mobile Robot Experimentation

Experimental Appartus In this experiment, a set of complex textures (cf. Fig 8) made
of plexiglass were fixed on the sides of two small corridors (1m long). A different tex-
ture was assigned to each side of each corridor. The robot’s task was to follow the
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Fig. 7: Mean performance obtained with IMP for the 5 longer arcs across the 8 textures.

AT g &
£ "’%

£ ¥

4
@ Y
5,9
Ggi
1

5
s
5
B
-
5
]

@
)
&
%

£ : boasesets) Y. -{:.!
£| Wetetatatersts AR ,f? .‘3*.
A X Y wkod
et L q.;:?; .f;,',
ok K R Rt

D

Fig. 8: The four textures used in the mobile robot experiment. These textures were made of relief
decorated plexiglass

walls in its environment, to enter a corridor if encountered, to recognize the textures
on its sides, and to learn to turn left or right at the end of the corridor, depending on
the left/right combination of the textures thus recognized. A main difference with the
previous experiment was the “touch strategy”. We previously swept whiskers on a tex-
ture by rotating the head, trying to maximize the number of whiskers in contact with
the texture. Here, the whole robot was moving, the head didn’t rotate and only a subset
(~ 10 vibrisse, the two longer arcs) of whiskers were actually touching the textures,
from a varying distance.

To allow the robot to navigate in its environment using only its whiskers as sen-
sory input, we developed a simple obstacle avoidance strategy. A distance information
was first computed by taking into account the iso-length arcs. One minus the mean
arc deflection was weighted by the mean within-arc vibrissa size. Thus, the more vib-
risse were bent, the smaller was the output distance. Repeating this computation for
each arc, we obtained a value that decreased with the contact distance,

1

D= Y (1-V)xL, Q)



Fig.9: Robot environment showing the 2 corridors and direction convention used (Top). Robot
inside a corridor, with dimensions and command vector (Bottom)

V; being the mean deflection of the i arc and L; the mean length of the i’ arc. One can
notice that the smaller whiskers - the most frontal ones - contribute less to this mea-
sure than the longer ones. This may seem counter intuitive as, when an object touches
the small whiskers, it is probably closer than if it only touches the longer ones. But
generally in the described task, when an object touches the smaller whiskers, it also
touches the longer ones and the above weighting prevents an over-reaction. Moreover
this method has shown a better stability in corridors, where a small variation of vibrissa
deflection should provoke a small orientation reaction in order to make the correspond-
ing trajectory as straight as possible. This centering strategy was an important com-
ponent of the robot’s behavior since the corridors were 35cm wide, while the robot’s
width was 25cm (including wheels) and the maximum whisker range was 50cm, leav-
ing a small error margin for steady forward movement and whisker crack avoidance (cf.
Fig 9). We controlled the robot through a speed vector V applied at the axis of the neck
whose orientation component V) was given by:



Vy = (Dleft 7Dright) x G )

with the gain G = 0.01. V,, the translation speed, was fixed to 10cm/s. This sim-
ple control produced an obstacle avoidance behavior, with a tendency to wall follow-
ing. Additionally, this control produced a relatively stable corridor centering behavior
- which was its principal objective. Finally, using Dj.s; and D,;e; values, we could
roughly determine the corridor’s aperture size and trigger the learning/recognition pro-
cedure only when the robot was inside a corridor as determined by a distance threshold.

We first ran a series of 10 experiments for each corridor and each direction. We
simply positioned the robot approximately in front of the corridor and recorded the
IMP feature output at each time step within the corridor. We when fed 7 data runs to a
MLP (2 x 33 neurons in the input layer, 2 x 33 neurons in the hidden layer and 4 neurons
in the output layer), keeping the 3 others runs to test the learning result. A typical data
run length was ~ 7000.

Results Once the learning was completed, we ran four series of 20 additional exper-
iments to evaluate the capacity of the robot to turn in the right direction at each end
of each corridor. While the robot moved in a given corridor, in a given direction, we
fed the smoothed (low pass filter) 2 x 33 IMP output to the previously learned MLP
and computed the WTA on the output layer. By accumulating this winner value through
the whole corridor, we obtained a mean decision vector which served to take the final
decision (once again by a WTA). The corresponding results are summarized in Table
3. As expected, the trajectory stability played a role in performances as dithering in
the corridor induced variations in the perceived vibrations. Most of the errors occurred
when the robot’s trajectories were unstable (lot of dithering).

Table 3: Confusion matrix obtained for 20 runs for each corridor, in each direction.

Corridor-direction|1-1 1-2 2-1 2-2
1-1 75 15 10 0
1-2 0 100 0 O
2-1 15 0 8 0
2-2 0 15 0 85

We finally conducted qualitative experiments in the whole maze using the above
described navigation rules. The maze was a round corner rectangle of 2.20m by 4.10m
made of cardboard boxes with 2 corridors (cf. Fig 9). We added a simple hand cabled
behavior consisting of turning left or right at the end of a corridor, depending on the
recognized textures. The robot was initially positioned near the wall on the top of the
maze with left or right orientations. Any other starting position could have been used
with the limitation of avoiding a direct wall facing, as no “reversal” behavior was imple-
mented. In these conditions, the robot succeeded to autonomously circulate around the



maze, following either direction indicated by the textures on the corridor’s sides. Sev-
eral tours could be completed in a row thus demonstrating the efficiency of the robot’s
haptic system.

Figure 10 shows an example of the kind of trajectories obtained.

Fig. 10: Typical trajectory of the robot into the maze. Top: left oriented start. Bottom: right
oriented start.

4 DISCUSSION

If some research efforts have been devoted to texture discrimination in “fixed head”
tasks [10-12, 14], very few robots have been able to navigate and recognize tactile cues



in a less constrained environment using whiskers. One such work was done using cur-
vature sensors with two different types of surfaces that one may consider more as a
“shapes” than as a “textures”, as they seem to induce a mere deflection sequence rather
than a complex vibration [13]. This robot could be conditioned to associate an aver-
sive response with a given texture. A related work concerned a smooth versus rough
discrimination task in an open arena and involved an active microphone-based whisker
sensor with a natural rat’s hair [26]. Feature extraction called upon spectral analysis and
lead to qualitatively good results. However, as the author concludes, such system could
not be used to perform a more complex task without an improvement of its discrimi-
natory capability and reliability. Finally, Fox et al. (2009) also obtained good results in
a smooth/rough discrimination task on a mobile robot equipped with active whiskers
using an “onset” feature. This “onset” feature is roughly the FFT magnitude within a
short frequency band (2-3kHz) during the onset period of the whisker-texture contact
(the first 12.8ms of the contact). Moreover, this feature is invariant to the relative po-
sition and orientation of whiskers and textures. Experimental conditions were slightly
different from ours, as the texture position was chosen randomly and the robot didn’t
move while touching a texture.

None of these related approaches seems suitable for performing a more complex task
than simply discriminating smooth versus rough textures. In contrast, the haptic system
that has been described herein proved to be able to use texture discrimination to afford
minimal navigation capacities in a complex environment. Such capacities could be used
to complement vision in daylight conditions or to replace it in the dark.

With this haptic system, texture recognition is possible in both fixed and mobile
robot conditions. This tends to indicate that, despite the underlying simple algorithm
and the various approximations on which it relies, the IMP feature is robust.

Conversely, we already mentioned that the whisker orientations in our system is not
always well suited. Indeed, our whiskers are oriented toward the front (cf. Fig 5), which
occasionally prevents all the whiskers from touching a texture. Within a corridor, for
instance, about 10 whiskers only were touching the walls. Additionally, our implemen-
tation sometimes entails brusque return jumps of some whiskers when they are stuck on
a given surface, rather than a gentle sweeping, which makes their signals totally unreli-
able. Fortunately, this problem only occurs in corridors and with a minority of whiskers
(usually the more dorsal and ventral ones) and thus the classifier can see it as mere
noise. Obviously, a system in which the whisker orientation could be dynamically con-
trolled - such as the one used in [14] - would be more adapted to alleviate this specific
inconvenience and would be closer to the natural active whiskering system of rats.

Another remark concerns our feature extraction technique. We chose to design an
algorithm that extracts an estimation of the amplitude-frequency product. This choice
was based on a recent finding about how texture signals are encoded in a rat’s brain
[17]. Using such a feature, we were able to perform fine texture discrimination. This
finding is an argument in favor of the so-called “kinetic signature” hypothesis which
stands that each vibrissa encodes a specific signature of the touched surface in term of
magnitude and temporal pattern.

Likewise, the fact that our results suggest that the texture discrimination capacities
depend both on the length and number of the involved whiskers, seems to back up



the “resonance hypothesis” [27, 28] which stands that the self resonance property of a
vibrissa plays a crucial role in vibration transduction and, in some way, helps to enhance
texture perception. The exact manner in which this resonance property is exploited in
rats is still unclear, but it seems quite reasonable to think that a kind of signal filtering is
involved. Additional experiments with the current system might help clarify this issue.

Be that as it may, already acquired results strongly suggest that two hypotheses that
are currently considered as mutually exclusive to explain texture recognition in rats -
i.e., the “kinetic signature hypothesis” and the “resonance hypothesis” - may be, in fact,
complementary.

S CONCLUSION

We endowed a whiskered robot with a simple algorithm allowing to discriminate tex-
tures. Its efficiency has been demonstrated using both a fixed head and a mobile robot.
Comparatively to previous similar approaches, this system affords greater behavioral
capacities and may complement or supply vision in simple navigation tasks. Future
work will be devoted to demonstrating its ability to perform shape recognition. On a
fundamental level, it will also be used to investigate the influence of whiskers reso-
nance properties on texture transduction.
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